Feed aggregator

mGlu5 negative allosteric modulators: a patent review (2013 - 2016).

Recent Research Articles from UNTHSC - Tue, 06/06/2017 - 13:37
Related Articles

mGlu5 negative allosteric modulators: a patent review (2013 - 2016).

Expert Opin Ther Pat. 2017 Jun;27(6):691-706

Authors: Emmitte KA

Abstract
INTRODUCTION: The pursuit of small molecule mGlu5 NAMs as treatments for a variety of psychiatric and neurodegenerative disorders has developed into a mature field. In addition to extensive preclinical studies, multiple compounds have advanced into clinical trials with the most advanced studies occurring in patients with FXS, PD-LID, and MDD. Areas covered: This review begins with an update of the clinical activity with mGlu5 NAMs, and then moves into a summary of patent applications filed since 2013. The summaries are organized into three separate sections: (1) inventions centered on improvements to existing clinical compounds; (2) new small molecules that maintain the prototypical disubstituted alkyne chemotype found in many mGlu5 NAM compounds; and (3) new small molecules that are not from a disubstituted alkyne chemotype. Expert opinion: It is a critical moment for mGlu5 NAM research as recent reports from clinical trials have included some significant disappointments that have blunted prior optimism. Still, research in this area remains active, and recent years have added several more attractive small molecules to this field. There is now an arsenal of diverse chemotypes available to continue to probe this target in the hopes that a drug may yet emerge.

PMID: 28067079 [PubMed - indexed for MEDLINE]

Effects of Oxidative Stress and Testosterone on Pro-Inflammatory Signaling in a Female Rat Dopaminergic Neuronal Cell Line.

Recent Research Articles from UNTHSC - Tue, 06/06/2017 - 13:37
Related Articles

Effects of Oxidative Stress and Testosterone on Pro-Inflammatory Signaling in a Female Rat Dopaminergic Neuronal Cell Line.

Endocrinology. 2016 Jul;157(7):2824-35

Authors: Holmes S, Singh M, Su C, Cunningham RL

Abstract
Parkinson's disease, a progressive neurodegenerative disorder, is associated with oxidative stress and neuroinflammation. These pathological markers can contribute to the loss of dopamine neurons in the midbrain. Interestingly, men have a 2-fold increased incidence for Parkinson's disease than women. Although the mechanisms underlying this sex difference remain elusive, we propose that the primary male sex hormone, testosterone, is involved. Our previous studies show that testosterone, through a putative membrane androgen receptor, can increase oxidative stress-induced neurotoxicity in dopamine neurons. Based on these results, this study examines the role of nuclear factor κ B (NF-κB), cyclooxygenase-2 (COX2), and apoptosis in the deleterious effects of androgens in an oxidative stress environment. We hypothesize, under oxidative stress environment, testosterone via a putative membrane androgen receptor will exacerbate oxidative stress-induced NF-κB/COX2 signaling in N27 dopaminergic neurons, leading to apoptosis. Our data show that testosterone increased the expression of COX2 and apoptosis in dopamine neurons. Inhibiting the NF-κB and COX2 pathway with CAPE and ibuprofen, respectively, blocked testosterone's negative effects on cell viability, indicating that NF-κB/COX2 cascade plays a role in the negative interaction between testosterone and oxidative stress on neuroinflammation. These data further support the role of testosterone mediating the loss of dopamine neurons under oxidative stress conditions, which may be a key mechanism contributing to the increased incidence of Parkinson's disease in men compared with women.

PMID: 27167771 [PubMed - indexed for MEDLINE]

Pgrmc1/BDNF Signaling Plays a Critical Role in Mediating Glia-Neuron Cross Talk.

Recent Research Articles from UNTHSC - Tue, 06/06/2017 - 13:37
Related Articles

Pgrmc1/BDNF Signaling Plays a Critical Role in Mediating Glia-Neuron Cross Talk.

Endocrinology. 2016 May;157(5):2067-79

Authors: Sun F, Nguyen T, Jin X, Huang R, Chen Z, Cunningham RL, Singh M, Su C

Abstract
Progesterone (P4) exerts robust cytoprotection in brain slice cultures (containing both neurons and glia), yet such protection is not as evident in neuron-enriched cultures, suggesting that glia may play an indispensable role in P4's neuroprotection. We previously reported that a membrane-associated P4 receptor, P4 receptor membrane component 1, mediates P4-induced brain-derived neurotrophic factor (BDNF) release from glia. Here, we sought to determine whether glia are required for P4's neuroprotection and whether glia's roles are mediated, at least partially, via releasing soluble factors to act on neighboring neurons. Our data demonstrate that P4 increased the level of mature BDNF (neuroprotective) while decreasing pro-BDNF (potentially neurotoxic) in the conditioned media (CMs) of cultured C6 astrocytes. We examined the effects of CMs derived from P4-treated astrocytes (P4-CMs) on 2 neuronal models: 1) all-trans retinoid acid-differentiated SH-SY5Y cells and 2) mouse primary hippocampal neurons. P4-CM increased synaptic marker expression and promoted neuronal survival against H2O2. These effects were attenuated by Y1036 (an inhibitor of neurotrophin receptor [tropomysin-related kinase] signaling), as well as tropomysin-related kinase B-IgG (a more specific inhibitor to block BDNF signaling), which pointed to BDNF as the key protective component within P4-CM. These findings suggest that P4 may exert its maximal protection by triggering a glia-neuron cross talk, in which P4 promotes mature BDNF release from glia to enhance synaptogenesis as well as survival of neurons. This recognition of the importance of glia in mediating P4's neuroprotection may also inform the design of effective therapeutic methods for treating diseases wherein neuronal death and/or synaptic deficits are noted.

PMID: 26990062 [PubMed - indexed for MEDLINE]

Pages